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Abstract

The use of helicopters as a sensor platform offers flexible fields of application due to adaptable flying speed at low
flight levels. Modern helicopters are equipped with radar altimeters, inertial navigation systems (INS), forward-looking
cameras and even laser scanners for automatic obstacle avoidance. If the 3D geometry of the terrain is already available,
the analysis of airborne laser scanner (ALS) measurements may also be used for terrain-referenced navigation and change
detection. In this paper, we present a framework for on-the-fly comparison of current ALS data to given reference data of
an urban area. In contrast to classical difference methods, our approach extends the concept of occupancy grids known
from robot mapping. However, it does not blur the measured information onto the grid cells. The proposed change
detection method applies the Dempster-Shafer theory to identify conflicting evidence along the laser pulse propagation
path. Additional attributes are considered to decide whether detected changes are of man-made origin or occurring due
to seasonal effects. The concept of online change detection has been successfully validated in offline experiments with
recorded ALS data streams. Results are shown for an urban test site at which multi-view ALS data were acquired at an
interval of one year.
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1. Introduction

1.1. Problem description

Automatic identification of urban structures and the
analysis of their changes are important steps to provide
a basis for monitoring and planning. Common tasks in
this context are the documentation of urban development,
surveying of construction sites, or damage inspection af-
ter disasters. In particular, the automatic acquisition of
buildings and their 3D geometry is of great interest, which
is confirmed by the growing number of scientific papers on
this topic (Rottensteiner et al., 2013). Data that are an-
alyzed in many of these studies are typically obtained by
area-wide acquisition and stereo analysis of high-resolution
aerial images (Leberl et al., 2012). Another established
technique to deliver 3D data of the terrain is airborne laser
scanning (ALS), which is usually carried out with a nadir
or near-nadir looking sensor in a strip-wise fashion.

In contrast to nadir imaging or scanning, an oblique
forward-looking laser scanner like those used in obstacle
warning systems for helicopters (Schulz et al., 2002) can
be utilized to create 3D point clouds with full terrain cover-
age, which is achievable by combining the ALS data from
multiple flight paths with varying azimuth angle. This
configuration allows the acquisition of facades and rooftops
with nearly the same point density (i.e., the same num-

ber of points per unit surface area). However, to be able
to use data from multiple ALS scans of the same urban
area, a basic requirement is an accurate alignment of the
data. On the one hand, this co-registration is necessary
to merge multi-view (multi-aspect) ALS data to form a
consistent reference data set. On the other hand, a mini-
mization of spatial discrepancies is essential when compar-
ing multi-temporal ALS data for automatic change detec-
tion. The overall positioning accuracy, the average point
density, and the average discrepancy between the refer-
ence and the current ALS data are the delineating factors
that limit the minimum size of detectable changes. There-
fore, the change detection method must be scalable to the
actual system and survey characteristics. In addition, it
must take account of occlusions and missing information
within the 3D scene.

ALS is well suited to provide 3D measurements which
allow direct comparison of geometric features, but addi-
tional requirements must be met by the data acquisition
and data analysis if the laser scanner is used to support
short-term operations, such as the surveillance of urban
areas, terrain-referenced navigation, or detection of rapid
changes. Examples can be found in assistance systems
for helicopter pilots, landing operations in urban terrain,
search and rescue missions, emergency services, or disas-
ter management. These applications require methods for
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immediate (on-the-fly) processing of range measurements
instead of the classical offline treatment of pre-processed
ALS data.

1.2. Overview: different stages of ALS data analysis

The intention to use an ALS system for automatic
change detection implies that 3D data of the urban area
in question have been acquired at an earlier date, so that
currently measured ALS data can be compared to these.
In this paper, we address change detection mainly in the
case that both the reference data and the current 3D data
are acquired by ALS. In addition, we require the respec-
tive ALS system to allow access to the component’s raw
measurements, i.e. the range data, the scanning geome-
try, and the IMU/GNSS trajectory (see Section 2). As
motivated before, we capture the scene with an oblique
forward-looking laser scanner.

Overall, we distinguish two different stages of ALS data
acquisition and processing (Fig. 1):

(1.) The creation of the reference database is not time-
critical, i.e. the urban area can be scanned on mul-
tiple criss-crossing flight paths, and the raw data are
processed and optimized offline. This includes the fea-
sibility of correcting GNSS positioning errors by data
from ground-based augmentation stations. In (Hebel
and Stilla, 2012), we described a method for object-
based analysis and automatic registration of such ALS
data, together with a method for the automatic bore-
sight calibration of the ALS system. In the course of
the data analysis, local principal components are com-
puted at each 3D point, and a region growing tech-
nique is used with the aim of ground level segmen-
tation. Within each of the overlapping point clouds,
planar shapes are detected by an iterative combina-
tion of RANSAC plane fitting and point-specific re-
gion growing. This procedure separates typical parts
of buildings from clutter objects, such as bushes or
trees. To assign identical (homologous) planar shapes
across overlapping point clouds, we derive several ge-
ometric attributes and evaluate distances of feature
vectors. Planarity constraints for these plane-to-plane
correspondences are then transferred into systems of
linear equations to determine both the boresight pa-
rameters and the data alignment. Details of these
steps can be found in (Hebel and Stilla, 2012). In this
paper, we exploit the segmentation results to support
the change detection process.

(2.) During the mission, all the new ALS measurements
are to be (i) categorized, (ii) aligned and (iii) com-
pared to the reference data. These three tasks are
intended to be performed in line with the data acqui-
sition, which means that the processing is done con-
tinuously on the acquired data stream instead of eval-
uating the complete point cloud. Regarding task (i),
we described a fast segmentation method in (Hebel
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Figure 1: Overview: ALS data acquisition and analysis for automatic
change detection.

and Stilla, 2008) that is based on scanline segmen-
tation and grouping of line segments in consecutive
scanlines. Matching planar objects, which are identi-
fied in both the current data and the reference data,
can be used to correct absolute errors of the measured
sensor position (Hebel and Stilla, 2010). Even if we
have to deal with worse georeferencing accuracy and
reliability due to uncorrected GNSS and/or INS drift
conditions, this terrain-referenced navigation ensures
a permanent alignment of the data, which was defined
as task (ii). In this paper, we focus on the compar-
ison task (iii), and we start from the premise that
the system calibration and data alignment issues are
solved.

Classical methods of change detection in ALS data typi-
cally compare the point clouds themselves. In contrast, we
include the sensor positions in our considerations. With
the assumption of a straight-lined propagation of laser
pulses, we state that the space between the laser source
and the reflecting 3D point must be empty (or transpar-
ent). Additionally, we allow for the occupancy of space
behind the reflecting spot to be unknown, as long as it is
not affected by other laser measurements. This approach
handles occlusions and changes implicitly, such that the
latter are identifiable by conflicts of empty space and oc-
cupied space along the direction of the laser pulse (which
we call henceforth “laser beam”). In robot mapping, such
information is often managed in so-called occupancy grids
(Moravec and Elfes, 1985). In this paper, we adapt some
of these concepts for the use with ALS data. However,
instead of evaluating occupancy conflicts on the grid cells
themselves, we identify these conflicts at the exact posi-
tion of the measured 3D points. From a methodical point
of view, the presented approach is designed for a future
implementation for on-board processing in ALS systems.
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This means that the algorithms have been adapted to the
boundary conditions described above. With our experi-
mental system and implementation, it was not possible to
access or process the data in realtime, but ALS-system
manufactures are encouraged to utilize these concepts in
their future development.

In the next section, we give an overview of related work
on change detection and occupancy grids. Section 2 sum-
marizes the principles of ALS and direct georeferencing.
Our methodology is explained in Section 3. A description
of our ALS setup and experimental results can be found
in Section 4. Finally, Section 5 presents a discussion and
our conclusions.

1.3. Related work

In the last twenty years, various academic and industrial
research groups have investigated automatic techniques for
urban change detection. Most of them approach this task
with different intentions and therefore different sensors
(Hinz, 2004). Typical examples are the automatic update
of building databases and the maintenance/refinement of
city models and geographic information systems (GIS). In
these examples, the data acquisition can usually be post-
poned until conditions are optimal (e.g., weather, daytime,
season), such that area-wide 3D data can well be obtained
by photogrammetric reconstruction from overlapping high-
resolution aerial images (Gruber, 2007; Leberl et al., 2012).
Synthetic aperture radar (SAR), especially interferomet-
ric SAR (InSAR), is also qualified for large-scale urban
data acquisition, and it represents a daylight- and weather-
independent data source. In a comparison of InSAR and
ALS for automatic building reconstruction, Stilla et al.
(2003) concluded that building reconstruction is quite pos-
sible from InSAR data. Meanwhile, the achievable level of
detail can even compete with laser scanning (Schmitt and
Stilla, 2011).

Considering the requirements during stage (2.) in Fig. 1,
ALS has several additional advantages when compared
with the other established techniques for 3D data acquisi-
tion and processing. While the InSAR principle requires
a side-looking illumination of the scene, an advantage of
ALS is the acquisition of 3D data even in the direction
of flight. The use of ALS for change detection with re-
gard to buildings has been proposed, for instance, by Mu-
rakami et al. (1999). Typically, a digital surface model
(DSM) is generated by interpolating the 3D points onto a
2D grid, and changes are detected by computing the differ-
ence of these DSM data. To increase the reliability of the
change detection results, Vögtle and Steinle (2004) classify
the laser points into the classes bare-earth, building, and
vegetation. We have described a similar classification ap-
proach in (Hebel and Stilla, 2008, 2012) which is used to
optimize the automatic registration of overlapping point
clouds. The analysis of multi-temporal ALS data is some-
times proposed to assess damage to buildings, e.g., after
earthquakes. Hommel (2009) puts strong emphasis on the
elimination of vegetation in the ALS data, as this class of

points could be misinterpreted, depending on the foliation
state of the vegetation in the different data sets. A sim-
ilar argumentation given by Rutzinger et al. (2010) was
also confirmed in our experiments. However, other appli-
cations are conceivable wherein the detection and analysis
of urban vegetation are of prime importance. A thorough
study on DSM-based change detection methods for urban
areas and a detailed survey of related work can be found
in (Matikainen et al., 2010).

Unlike the comparison of DSMs, the applications men-
tioned in Section 1.1 require a different strategy for data
processing. There are two reasons for this: (i) we consider
oblique views that lead to varying occlusions and point
density depending on the aspect angle, (ii) the compari-
son of current ALS data to given reference data must be
executable in line with the data acquisition.

In robotics, similar boundary conditions occur in the si-
multaneous localization and mapping (SLAM) problem, if
ranging sensors are used to generate global maps from lo-
cal and uncertain sensor data (e.g., sonar, radar, or laser
scanning). Most commonly, 2D maps that are horizon-
tal projections of 3D space are taken as a basis. Moravec
and Elfes (1985) were the first to represent these maps
as 2D arrays of cells labeled unknown, empty, and occu-
pied, with values ranging from 0 to 1 to define the “degree
of certainty”. Puente et al. (1991) distinguish two differ-
ent approaches to fuse information within such occupancy
grids. These approaches are: (a) probabilistic estimation
based on Bayes’ theorem, and (b) the combination rule of
the Dempster-Shafer theory of evidence (Shafer, 1976).

Detailed work on autonomous navigation of mobile
robots by a combination of probabilistic occupancy grids
with neural networks was done by Thrun (1998). Pellenz
and Paulus (2008) describe and compare some examples
of robot navigation and 2D map generation found at the
“RoboCupRescue” competition. Probabilistic occupancy
grids have even been proposed for 3D object recognition
(Yapo et al., 2008). Instead of a fixed-size 3D grid, Hor-
nung et al. (2013) use an adaptive octree representation
together with a probabilistic occupancy estimation to gen-
erate volumetric 3D environment models.

The evidence theory of Dempster-Shafer is commonly
used for data fusion (Rottensteiner et al., 2004). In the
context of occupancy models, it can substitute the prob-
abilistic approach (Zou et al., 2000; Grabe et al., 2009).
There it has the advantage of evaluating conflicting infor-
mation implicitly, which can be utilized to detect object
movements in the scene (Moras et al., 2011). In this pa-
per, we evaluate such conflicts in multi-view and multi-
temporal ALS data, which we organize in (but not inter-
polate to) 3D grids. Similarly, Himmelsbach et al. (2008)
proposed to use a 2.5D occupancy grid that acts like a
hash table for the retrieval of 3D points in their 3D ob-
ject perception system. A description of the strengths and
weaknesses of a 3D-based approach is given in the next
sections.
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Figure 2: Exemplary ALS sensor carrier and configuration.

2. ALS data acquisition and direct georeferencing

Since an ALS system consists of several spatially sepa-
rated parts, the mutual placement and alignment of these
elements on the aircraft is of great importance when com-
bining the complementary information of all components.
While metering the aircraft’s attitude, the lever arms
(dLiDAR,dGNSS) of laser scanner, GNSS receiver (global
navigation satellite system, e.g., GPS, the Global Posi-
tioning System) and IMU (inertial measurement unit) are
taken into account to transfer the positional coordinates
to the laser scanner’s center. Fig. 2 illustrates our config-
uration, which can be considered as a typical ALS setup,
despite the fact that we use an oblique forward-looking
laser scanner. A detailed description of our specific ALS
system can be found in Section 4, or more thoroughly in
(Schatz, 2008).

The laser scanner is the core element of the ALS sys-
tem. It makes use of the time-of-flight distance measure-
ment principle, e.g. by estimating the range corresponding
to the echo pulses as they can be found by constant frac-
tion discrimination or full waveform analysis (Stilla and
Jutzi, 2009). Opto-mechanical beam scanning provides a
specific scan pattern, in which a distance rL measured at
time t is georeferenced according to scanner geometry as
well as position and orientation of the sensor. With the
navigational information s (sensor position) and RN (sen-
sor orientation) relating to the laser scanner’s center, rL
is directly georeferenced in the following way:

p = s+RN ◦RB ◦RS ◦ rL . (2.1)

The above equation is given with the following notations:

s : 3D position of the laser scanner at time t in a Cartesian
geographic coordinate system (e.g., ECEF),

rL : distance measured by the laser scanner, given as a
Euclidean vector (0, 0, rL)

T,

RS : 3 × 3 rotation matrix which describes the scanning
geometry,

RB : 3 × 3 boresight matrix (relative orientation of IMU
and laser scanner),

RN : 3×3 rotation matrix which describes the orientation
of the IMU in 3D space,

p : coordinates of the resulting “laser point”.

If r abbreviates the oriented distance vector rL, this equa-
tion simplifies to

p = s+ r . (2.2)

Direct georeferencing of laser range measurements pro-
vides a data acquisition method that is appropriate for air-
borne surveying. However, the accuracy of the derived 3D
point clouds is affected by several influencing factors, re-
flecting the complexity of the ALS system (Schenk, 2001).
We have summarized and quantified these influences in
(Hebel and Stilla, 2012), where we also discuss possible
improvements to the sensor system and data processing to
reduce or avoid these error sources. The overall point po-
sitioning accuracy is one of the crucial factors influencing
the expectable exactness of the following change detection
procedure.

3. Strategy for data processing

Within classical occupancy grids, the data are downsam-
pled or interpolated to match the grid cells. Consequently,
the details and the accuracy of detectable changes would
be bounded by the resolution of the occupancy grid, while
a fine-grained grid would lead to a huge memory consump-
tion.

Instead of evaluating the occupancy of space relating to
entire cells of an occupancy grid, we do this for the exact
positions of the measured 3D points. The grid structure
is only used as a spatial collection of links to the unmodi-
fied data, thus providing information on the proximity of
laser “beams” and points. In stage (1.), the reference data
are assigned to a 3D grid that covers the complete urban
area. Fig. 3 illustrates such a 3D grid and the process of
ALS data acquisition. During stage (2.), this grid struc-
ture allows us to perform fast search operations, so we can
evaluate whether current ALS measurements confirm or
contradict previous information in the database. Further-
more, the cell size of the grid can be chosen comparatively
wide (e.g., five times the average point-to-point distance),
resulting in moderate memory requirements. Since the 3D
grid is only used as a search structure, the selection of the
cell size has only minor impact on the results.

3.1. Generation of the database

In stage (1.), each laser pulse’s origin s is stored in an in-
dexed list L, together with the (oriented) measured range
r, such that p = s + r are the coordinates of the respec-
tive laser point. The sensor position s and the orienta-
tion RN are interpolated from the synchronously recorded
GNSS/IMU information which is typically captured with a
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Figure 4: (a) The index i of a point pi is stored in the corresponding
cell of the 3D grid VP. (b) The same index i of the associated “beam”
(si, ri) is distributed among cells of the 3D grid VR.

frequency lower than the pulse repetition rate of the laser
scanner. If multiple echoes are received for a single laser
pulse, these simply lead to multiple entries in L. Further-
more, let r0 denote the respective unit vector r/ ‖r‖. Two
3D grids VP and VR (Fig. 4) as depicted in Fig. 3 are filled
with indices of L in the following way: Each index i ∈ L is
included in a single cell of VP according to the 3D position
of the laser point pi that corresponds to this index. There-
fore, VP simply represents an index-based rasterization of
the point cloud. Beyond that, VR is used to store all in-
dices of laser beams that traverse the grid cells. To cope
with this task, we implemented a 3D variant of Bresen-
ham’s algorithm (Bresenham, 1965), that is well-known in
computer graphics for efficient raster line drawing. For a
single laser range measurement (si, ri), Fig. 4 illustrates
how its index i is distributed among cells of VP and VR.
Each cell in VP or VR can receive either none, one or mul-
tiple indices, depending on the number of laser points con-
tained in that cell, or depending on the number of laser
beams that run through that cell, respectively.

3.2. Modeling the occupancy of space

Following the terminology of the Dempster-Shafer the-
ory, let U denote the universal set that contains all pos-

sible states of the observed system. In our case, we ob-
serve the occupancy of space at a given 3D position, so
U = {emp, occ} is the universal set, where emp and occ
are abbreviations for “empty” and “occupied”. There is
no need to introduce a third label “occluded”, since occlu-
sions are implicitly modeled as unknown space, which is
described later on in this section. The power set 2U of U
is given as the set {∅, {emp} , {occ} , U}. A so-called be-
lief mass in the interval [0, 1] is assigned to each element
of this power set, with the additional properties that the
empty set ∅ has zero mass, and the sum of all other masses
is one:

m : 2U → [0, 1] , m (∅) = 0,
∑
A∈2U

m (A) = 1 . (3.1)

An assignment that fulfills these criteria is called “basic be-
lief assignment”. The Dempster-Shafer theory makes use
of the mass assignment to define upper and lower bounds
of an interval that contains the classical probability. These
bounds are called “plausibility” and “belief”. Except for
equation (3.1), the value of m (U) does not concern {emp}
or {occ} itself, as each of these has its own mass. Instead,
the mass m (U) of the universal set U is interpreted as the
degree of ignorance. If m (U) equals one, this means that
the occupancy of space at the given position is completely
unknown. I.e., the Dempster-Shafer theory allows for the
explicit representation of ignorance, which means that a
lack of information can be distinguished from uncertainty.

From a single laser range measurement p = s+r, we get
the information that the space in front of p (seen from s)
is empty, and the space at p itself is occupied. Anywhere
else, the occupancy of space remains unknown. Intuitively,
a single laser point is not interpreted as a pinpoint phe-
nomenon. Instead, we associate a spatially extended ap-
pearance with it. There are three reasons for this: First,
the physical properties of the laser pulse propagation lead
to a spatially and temporally extended laser spot (foot-
print). Second, the position of a measured laser point is
somewhat uncertain due to errors in direct georeferenc-
ing and misalignment of the data. Third, the size of the
smallest observable and discriminable structures depends
on the distance between neighboring points, so the spatial
extent of a laser point should be modeled in accordance
with the average point density (points per unit surface
area at ground level). To model a gradual transition be-
tween the states empty and occupied (and unknown), we
define the impact of a laser range measurement p = s+ r
on the assignment of masses to an arbitrary position q in
3D space in the following way:

First, let dx denote the longitudinal distance of q to p
(see Fig. 5):

dx = (q − p) · r0 . (3.2)

Similarly, let dy denote the transverse distance of q to p:

dy = ‖(q − p)× r0‖ . (3.3)
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On the basis of the distances dx and dy, we define the
following belief masses (at position q caused by p):

mq,p (∅) = 0 ,

mq,p ({emp}) =
(
1− 1

1 + e−λdx−c

)
· e−κd2

y , (3.4)

mq,p ({occ}) =
(

1

1 + e−λdx−c
− 1

1 + e−λdx+c

)
· e−κd2

y ,

mq,p (U) = 1−mq,p ({emp})−mq,p ({occ}) .

By definition, (3.4) fulfills the conditions (3.1), so these
equations represent a basic belief assignment. The respec-
tive first factor in mq,p ({emp}) and mq,p ({occ}) is com-
posed of sigmoid functions. One of these is used to de-
scribe free space in front of p, the other characterizes the
lack of knowledge behind the laser point. In between, the
inverse sum of the sigmoid functions reflects the actual oc-
cupancy at the position of p. The longitudinal extent of
occupied space at p is controlled by the parameter c, and
the gradual transition from empty to occupied to unknown
is controlled by λ. Fig. 6 shows this interaction of the sig-
moid functions, with the parameters in equations (3.4) set
to λ=12 and c=5. Outside of the beam axis, the second
factor in mq,p ({emp}) and mq,p ({occ}) describes a Gaus-
sian profile that is controlled by the parameter κ and fades
to ignorance (transverse extent of the laser point/beam).
Fig. 7 shows exemplary graphs of the nonzero belief masses
around p.

The parameters (λ, c, κ) describe the fuzziness of the
laser points. As mentioned above, they should be chosen
to conform to the physical characteristics of the laser range
measurements in the survey. This means thatmq,p ({occ})
should reflect the point positioning accuracy, which is in-
fluenced, for example, by the range resolution of the spe-
cific laser scanning device. But it is just as important
that mq,p ({occ}) conforms to the average point-to-point
distance in the scene: if mq,p ({occ}) is too narrow, most
range measurements would not interfere with another in

xd
yd

,m empq p

xd
yd

,m occq p

xd
yd

,m Uq p

Figure 7: Comparison of belief masses near p (occupied, empty, un-
known), λ=12, c=5, κ=8.

the following change detection approach. Otherwise, if
mq,p ({occ}) is too broad, this would lead to false detec-
tions and degraded accuracy. As a rule of thumb, κ should
be chosen such that the FWHM (full width at half max-

imum) of e−κd2
y amounts to twice the average point-to-

point distance within a single strip, thus leading to an
area-filling overlap of neighboring “points”. However, if
the point positioning accuracy and data alignment are
even worse than this distance, κ has to be decreased to
take account of this. The setting of the parameters (λ, c)
should follow that of κ, such that mq,p ({occ}) puts on
nearly circular shape (see top of Fig. 7). An additional
discussion on the setting and the influence of these pa-
rameters can be found in Section 5.

3.3. Combination of evidence from different measurements

In the previous section we considered a single range mea-
surement p = s + r and its influence on the mass assign-
ment to a position q. In case we observe two or more
laser beams in the neighborhood of q, we need to com-
bine the respective mass assignments. Let p1 = s1 + r1
and p2 = s2 + r2 be two independent laser range mea-
surements. Equations (3.4) define different sets of mass
assignments to the position of q, which are given by mq,p1

and mq,p2
, respectively. For better readability, we abbre-

viate mq,p1 ({emp}) to m1 (e) and mq,p1 ({occ}) to m1 (o)
etc.

Using these notations, we apply Dempster’s rule of com-
bination (Dempster, 1967) to calculate the joint mass m
from the sets m1 and m2. The amount C of conflict be-
tween the two mass sets is measured as follows (“empty in
m1 and occupied in m2, or vice versa”):

C = m1 (e)m2 (o) +m1 (o)m2 (e) . (3.5)
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Within Dempster’s rule of combination, conflicting evi-
dence is ignored, which is achieved by the normalization
factor (1− C) as follows:

m (e) =
m1 (e)m2 (e) +m1 (e)m2 (U) +m1 (U)m2 (e)

1− C
,

m (o) =
m1 (o)m2 (o) +m1 (o)m2 (U) +m1 (U)m2 (o)

1− C
,

m (U) =
m1 (U) ·m2 (U)

1− C
, m (∅) = 0 . (3.6)

The operations (3.6) are commonly written as m = m1 ⊕
m2 and result in a new set m of belief masses that is a
combination of m1 and m2. It should be noted that ⊕ is
commutative and associative. Therefore, even an arbitrary
number of belief assignments can be combined by ⊕ in a
unique way.

3.4. Change detection

In stage (2.), we decide whether a new ALS measure-
ment q = sQ+rQ confirms or contradicts the mass assign-
ments which we obtain from old measurements that we
recorded in L. Conflicts occur if the laser beam (sQ, rQ)
traverses occupied space in front of q, or if q comes to lie
in a region that is marked empty.

We address the latter case first (conflict type A, Fig. 8a).
Let vq ⊂ VR denote the cells of VR which correspond to
the position of q. This subset vq may comprise only one
cell or an additional neighborhood. It is expected that vq
contains the indices of laser beams in L which affect the
mass assignment to the position of q. In Fig. 8a, these laser
beams are depicted with thin and partly dotted lines in
blue color. Let Iq be the set of indices which are associated
with vq. On the one hand, we consider the joint mass m 1©

q

resulting from all old measurements pi in L where i ∈ Iq:

m 1©
q = ⊕

i∈Iq
mq,pi

. (3.7)

On the other hand, the mass assignment m 2©
q that we ob-

tain from the (single) new measurement q = sQ+rQ itself
is given as:

m 2©
q ({emp}) = m 2©

q (U) = 0, m 2©
q ({occ}) = 1 . (3.8)

Based on these assignments, we can identify conflicts be-
tween m 1©

q and m 2©
q in the same way as it is done in

equation (3.5), resulting in a measure of conflict Cq =
m 1©

q ({emp}).
The other type of conflict is caused by occupied space

that is encountered while the laser pulse propagates from
sQ to q (conflict type B, Fig. 8b). To find these conflicts,
we extend the list L to include mass assignments to every
point p in L. We initialize these masses to an unknown
occupancy:

m 2©
p ({emp}) = m 2©

p ({occ}) = 0, m 2©
p (U) = 1 . (3.9)

We use Bresenham’s line drawing algorithm in 3D to iden-
tify grid cells in VP through which the laser beam (sQ, rQ)

sQ

rQ

q
i1 i2

vq VR

conflict type A

q

i1

i2

i4

i3

sQ

rQ

vp VP

conflict type B

(a) (b)

Figure 8: Conflicts between reference data (blue) and the current
measurement q = sQ + rQ (red, bold): (a) empty space at q, (b)
occupied space along rQ.

passes. Let vp denote this subset of VP, and let Ip be the
set of indices associated with vp. These indices reveal the
laser points in L (blue points in Fig. 8b) that are affected
by the current laser beam (sQ, rQ). For every position pi

with i ∈ Ip, we update the mass set m 2©
pi

to the joint mass
of m 2©

pi
and mpi,q:

m 2©
pi

← m 2©
pi

⊕mpi,q ∀i ∈ Ip . (3.10)

After the current laser scanning process has left the reach
of a point p in the database, we evaluate the accumulated
mass assignmentm 2©

p and its conflict tom 1©
p , which is given

analogous to equation (3.8). We obtain Cp = m 2©
p ({emp})

as a measure of conflict.

3.5. Including additional attributes

The steps described in the previous Sections 3.1 to 3.4
fit well into the boundary conditions that are set by the
multi-view ALS data acquisition and the applications de-
scribed in Section 1.1. As required, the comparison of
multi-temporal ALS data can be accomplished during the
data acquisition, since each new range measurement is
tested separately for possible conflicts with the reference
data (i.e. without the need to address the entire point
cloud). Furthermore, occlusions are handled implicitly.

Up to this point, segmentation and classification results
did not find their way into the change detection procedure.
However, these results are available, as they arise from the
generation of the reference data (Hebel and Stilla, 2012)
and the scan-line analysis of current ALS measurements
(Hebel and Stilla, 2008). In the following, we use this ad-
ditional information to improve the detection performance
and the automatic interpretation of detected changes. De-
pendent on the respective object class, we control the im-
pact of range measurements (s, r) ∈ L on the mass assign-
ments in 3D space.

One drawback of the approach presented so far is the
missing distinction of continuous surfaces and clutter (e.g.,
vegetation). The problem herein lies in the ability of laser
pulses to partially penetrate vegetation, which is caused
by the spatial extent of the laser spots (Reitberger et al.,
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Figure 9: Belief assignment to points on the laser beam (dy = 0), in
case this measurement is associated with vegetation.

2009). This characteristic is not yet included in the model
described by equations (3.4). As a consequence, a single
laser pulse can lead to positions in its propagation path
that are marked occupied by one echo but empty by sub-
sequent echoes. These self-induced conflicts of mass as-
signments occur because multiple echoes are treated inde-
pendently in L, but in fact these measurements are correla-
tive. However, even independent measurements (s, r) that
are associated with (unchanged) vegetation can result in
conflicts, as these 3D positions are subject to considerable
statistical fluctuations. For these reasons, it is proposed
to model vegetation with parameters different from those
of continuous surfaces. A possible way to represent the
fuzziness of vegetation is to increase the degree of igno-
rance m(U) and the dimensions of occupied space. This
is achieved by modifications of (3.4) with weighting fac-

tors fe and fo and alternative parameters (λ̂, ĉ, κ̂) in the
following way:

mq,p ({emp}) = fe ·
(
1− 1

1 + e−λ̂dx−ĉ

)
· e−κ̂d2

y ,

mq,p ({occ}) = fo · e−κ̂d2
y

1 + e−λ̂dx−ĉ
− fo · e−κ̂d2

y

1 + e−λ̂dx+ĉ
, (3.11)

mq,p (U) = 1−mq,p ({emp})−mq,p ({occ}) .

According to these equations and analogous to Fig. 6,
Fig. 9 shows the mass assignment to positions along the
laser beam. Same as λ, c and κ in equations (3.4), rea-
sonable values for the parameters depend on the survey
and system characteristics. In this example, fe = 0.6 and
fo = 0.6 are the weighting factors that are used to ensure
a uniformly high degree of ignorance and low occupancy.
Likewise, λ̂ = 5, ĉ = 7 (and κ̂ = 2) are the parameters
which model a higher fuzziness of the laser point (approx-
imately two to three times higher if compared with the
standard setting). This setting is used to describe the oc-
cupancy of space for all measurements that have been as-
signed to the vegetation class. Different ways are available
to perform this classification automatically:

• If several echoes are detected for one emitted laser
pulse, all but the last echo can be ascribed to vegeta-
tion.

• In case a full waveform laser scanner is employed, veg-

q

dy

n0

dx

p

s
r

Figure 10: Distances of q to the local plane at p.

xdyd

,m occq p

Figure 11: Belief mass of the state occupied near p, in case p is
embedded into a continuous surface.

etation can be detected by a detailed analysis of the
echo’s waveform (Reitberger et al., 2009).

• The segmentation method described in (Hebel and
Stilla, 2012) provides an evaluation of the local ge-
ometry by principal component analysis (PCA). In
particular, the method identifies 3D points that are
embedded into continuous surfaces (e.g., ground level,
parts of buildings) and separates these from irregular
points. The latter are assigned to the vegetation class.

In the extended model, range measurements (s, r) ∈ L
fulfilling one or more of the above criteria affect the as-
signment of belief masses to positions in 3D space under
equations (3.11) instead of (3.4).

An obvious way to refine the model is to account for
the orientation of continuous surfaces. If local PCA
clearly reveals a local normal direction, the distribution
of mq,p ({occ}) should be spread out along the detected
surface. Let p = s + r denote such a range measurement
listed in L, and let n0 denote the corresponding unit nor-
mal vector that is found by local PCA as the eigenvector
to the smallest eigenvalue. To avoid ambiguity, n0 is ori-
ented to the same half space as r, such that n0 · r ≥ 0
(see Fig. 10). In exchange for dx and dy, we define the
distances d̄x and d̄y in the following way:

d̄x = (q − p) · n0 ,

d̄y = ‖(q − p)× n0‖ .
(3.12)

In the extended model, the impact of p = s+ r on the
assignment of belief masses to q at first depends on the
Euclidean distance d = ‖q − p‖. If q is far apart from p
(e.g., d ≥ 3 m), mq,p is defined with (dx, dy) and (λ, c, κ)
according to equations (3.4). Otherwise, if q lies near to
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p, the same equations are evaluated with the distances
(d̄x, d̄y) and the parameters (λ, c, κ̄). The parameter κ̄ is
significantly smaller than κ and models a broad distribu-
tion of occupied space along the estimated surface at p.
Fig. 11 illustrates this distribution for a typical setting
κ̄ = 1 (and λ = 12, c = 5).

4. Experiments and results

The data that we analyzed for this study were acquired
during field campaigns in 2008 and 2009, using a RIEGL
LMS-Q560 laser scanner (version 2006) in combination
with an Applanix POS AV 410 inertial navigation sys-
tem. All sensors were attached to a helicopter of type Bell
UH-1D (Fig. 2). This experimental setup lacks online data
access, so we had to simulate the on-the-fly data analysis:
All experiments described in this section were conducted
in a post-processing mode based on the stream of recorded
raw data. With our configuration and settings, each scan
line of the laser scanner covered a field of view of 60◦ sub-
divided into 1000 angular steps. The inclination angle of
the laser scanner was set to 45◦ while flying with the he-
licopter’s nose pitched down (Fig. 2 and Fig. 3). Due to
aviation security reasons, the minimum flight level had to
be restricted to 1000 ft. These boundary conditions led to
laser strips with a width of 500 m and an average point-
to-point distance of 0.5 m. The table in Fig. 12 lists all
urban test sites where data have been acquired, together
with the point positioning accuracy that we achieved using
the calibration and data alignment methods described in
(Hebel and Stilla, 2012).

The experiments concerning change detection were con-
ducted with the “Abenberg” data. In April 2008, ALS
data have been acquired at this test site in a cross pattern
(Fig. 13a), resulting in an accumulated point cloud which
includes 5,400,000 points with an average point density
of 16 pts/m2. Fig. 14a shows a rendered visualization of
these reference data, where each point is gray-value coded
according to the echo amplitude, which is derived from
full waveform analysis. As described in Section 3.5, we
used local PCA and region growing in order to segment
and classify the reference data in L to the classes ground,
vegetation, and building (see Fig. 14b). The cell size of VR

and VP was chosen to be 2×2×2 m3, resulting in two 3D
grids of the dimensions 300×300×50 (which corresponds to
600×600×100 m3) to cover the area in question. After the
distribution of L-indices among these cells, the memory re-
quirements of VP and VR amount to 1.1 GB in total. The
test site “Abenberg” was scanned again in August 2009,
using the same sensors and a similar setting (Fig. 13b).

Based on the recorded data stream of single strips (e.g.,
number 1 in Fig. 13b), we successively applied the methods
described in Section 3. The parameters (λ, c, κ) in equa-
tions (3.4) were set to λ=12, c=5, κ=8 as shown in Fig. 6.
First results of this experiment are depicted in Fig. 14c.
Conflicts of type B with Cp ≥ th, (threshold th = 0.5),
are shown in red (objects that have disappeared), whereas

test site coordinates WGS84 date 
mm/dd/yy aspects points 

(overlap) 
density 
[pts/m²] 

accuracy 
[cm] 

Munich (TUM) N 48° 8.94', E 11° 34.04' 09/02/09 4 4,400,000 5.2 10-30 

Rendsburg N 54° 17.94', E 9° 41.28' 04/22/08 5 5,400,000 18.6 10-30 

Ruschberg N 49° 37.18', E 7° 17.33' 09/01/09 3 4,200,000 17.7 5-15 

Abenberg N 49° 14.50', E 10° 57.80' 04/18/08 4 5,400,000 16.1 5-10 

  08/31/09 4 6,200,000 21.1 5-10 

Kiel N 54° 19.41', E 10° 8.38' 04/23/08 6 6,600,000 9.9 10-70 

Ettlingen (IOSB) N 48° 56.83', E 8° 24.65' 09/01/09 3 5,000,000 20.0 10-30 

Figure 12: Details of the urban test sites, the respective data sets
and the achieved point positioning accuracy.
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Figure 13: Top view of the helicopter’s trajectory at the test site
“Abenberg”: (a) April 18, 2008, (b) August 31, 2009.

conflicts of type A with Cq ≥ th are colored yellow (ob-
jects that have appeared). In this example, vegetation
obviously causes a lot of type A conflicts, which can be
ascribed to seasonal influences (April vs. August).

The classification of the reference data (Fig. 14b) allows
us to control the influence of data points in the vegetation
class (λ̂ = 5, ĉ = 7, κ̂ = 2). Furthermore, we account
for the orientation of continuous surfaces (d̄x, d̄y, κ̄ = 1).
To avoid disturbances by single point clutter, we accept
detections only if they occur at least twice within the scan
line. The result is shown in Fig. 14d. In addition to the
previous color-coding, green points now indicate that these
are (most likely) part of an unchanged building (Cq ≤ th).

The remaining conflicts are mainly caused by moved
cars, demolition, and newly constructed buildings. Some
details of the results are depicted in Fig. 15. The left col-
umn of this figure shows detailed views that have been
generated from the 2008 reference data. In direct compar-
ison, the center column shows the respective views of the
2009 data. On the right, the results of automatic change
detection are depicted with a manual interpretation and
annotation. The “Abenberg Castle” can be seen in the
top row (Fig. 15a). Apparently, the cars disappeared from
the inner courtyard of the castle, and the construction in
front of the castle was finished in between 2008 and 2009.
Even the waving flag on the tower resulted in a detection.
Fig. 15b shows the most obvious detection, which is the
demolition of several houses in the center of Abenberg. In-
stead of the buildings, only a single car can be found here
in 2009. Besides the obvious detections, Fig. 15c shows
one of the main advantages of the presented approach: Al-
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Abenberg
N 49° 14.543‘, E 010° 57.690'
RIEGL LMS-Q560, Applanix POS AV 410
point positioning accuracy: ~ 10 cm

April 18, 2008

Abenberg
N 49° 14.543‘, E 010° 57.690'
RIEGL LMS-Q560, Applanix POS AV 410
point positioning accuracy: ~ 10 cm

August 31, 2009
verified ground level

conflict type A (appeared)
conflict type B (disappeared)

unchanged or previously unknown

verified planar region

(a)

(b)

(c)

(d)

Figure 15: Details of the results: e.g., (a) cars that have disappeared from the inner courtyard of the castle, (b) demolition of several buildings,
(c) scaffolded house, (d) farm with new vehicle hall and silage.
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(a)

(b)

(c)

(d)

Figure 14: (a) View of the reference data, (April 2008), (b) classifi-
cation and segmentation of the reference data, (c) conflicts of mass
assignments (August 2009), (d) result of change detection.
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Figure 16: Model of the longitudinal (top) and transverse (bottom)
extent of occupied space at a laser point p for different settings of λ,
c and κ.

though some facades were not present in the reference data
(2008) due to incomplete terrain coverage, these structures
do not result in a false detection of changes in 2009. In-
stead, missing reference data are automatically comple-
mented by new measurements. Finally, Fig. 15d depicts a
farm with some reconstruction work done in between 2008
and 2009 (vehicle hall), and with some vehicles that have
appeared at this place. Changes were also detected at the
silage due to different filling levels.

A possible way to evaluate the proposed methods in de-
tail would be to simulate the ALS data acquisition, e.g.
with some kind of ray-tracing approach and a synthetic
scene. However, it is questionable whether a simulation
can reproduce data that is comparable to that of a real
ALS system. For a quantitative evaluation with the avail-
able real data, we would need the ground-truth of all
changes between 2008 and 2009, which we do not have.
Nevertheless, we used data of the buildings that can be
seen in Fig. 15b. It is out of question which buildings
in this part of the scene have changed due to demolition.
Together with the segmentation results, it is possible to
identify all laser range measurements in the data that cor-
respond to parts of unchanged buildings or to parts of
the demolished buildings. This portion of the data yields
many examples for conflicts of type B (objects that have
disappeared). To get examples for conflicts of type A (ob-
jects that have appeared) within the same data, we simply
changed the direction of time: the data “Abenberg 2009”
were treated as reference data, while the data stream of a
single strip from “Abenberg 2008” was investigated for the
detection of changes. With this experiment, we were able
to analyze which points of unchanged or changed parts
of buildings were correctly or incorrectly categorized, de-
pending on different settings of the parameters λ, c and κ
and different thresholds th. We used each of the settings
(λ, c) ∈ {(5, 7), (9, 6), (12, 5), (24, 4)} and κ ∈ {1, 2, 8, 18}
to model the longitudinal and transverse extent of occu-
pied space at the laser points (Fig. 16). For all sixteen
combinations of these settings, the measures of conflict
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Figure 17: Details of the results obtained with different parameter
settings. Left: type B conflicts 2008 → 2009, right: type A conflicts
2009 → 2008.

Cp (conflicts of type B) were computed with respect to
the timeline 2008 → 2009. The measures Cq (conflicts of
type A) were computed for the timeline 2009 → 2008, re-
spectively. The results of this experiment are depicted in
Fig. 17, with the previous color-coding and the threshold
th set to th = 0.5.

In addition to different settings of λ, c and κ, we have set
the threshold th to different values in the interval [0, 1], for
which we evaluated the rate of detections among measure-
ments on building parts that have changed, and (false)
detections on building parts that were unchanged. The
first rate corresponds to the probability of detection, while
the second is the false alarm rate. In literature, the plot of
these rates at different parameter settings is called receiver
operating characteristic, or ROC curve. ROC curves for
this experiment are depicted in Fig. 18. Each line in this
plot corresponds to a specific setting of (λ, c) and κ as de-
scribed above, for which the threshold th runs through the
interval [0, 1]. The “optimal” setting among these exam-
ples (if optimality means getting closest to 100% detections
and 0% false alarms) was found to be (λ, c, κ) = (12, 5, 8)
with the threshold set to th = 0.17, giving a probability of
detection of 99% at 1% false alarm rate in this example.

5. Discussion and conclusions

The experiments described in Section 4 demonstrated
that spatial changes can be reliably detected, provided
that the data are properly aligned. Seasonal changes in
vegetation, changes of buildings (e.g., extensions, demoli-
tion), and moved cars are found by our automatic method.
The minimum size of detectable changes is limited by the
point density and the respective point positioning accu-
racy, which need to be modeled correctly by means of the
parameters, i.e. (λ, c, κ). We evaluated different settings of
these parameters to detect changes of buildings (Fig. 17).
The ROC curves in Fig. 18 show that reasonable settings
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Figure 18: ROC curves showing the probability of detection and false
alarm rate for different settings of (λ, c, κ) and different thresholds
th (line style and color accord with Fig. 16).

of (λ, c, κ) result in a nearly equally good probability of de-
tection that is greater than 96% for single points, with a
false alarm rate below 2%. A reasonable setting of the pa-
rameters represents a compromise between the achievable
level of detail and the tolerance against data misalignment.
As to be expected, a small point density and/or discrep-
ancies between the different data sets result in a low level
of detail. If the discrepancies are small, we recommend to
set the parameters such that the FWHM of mq,p ({occ})
amounts to approximately twice the average point-to-point
distance within a single strip, so that measurements from
different strips will have a significant overlap. In case of
large discrepancies, the occupancy of space at the position
of p needs to be modeled even broader in order to smooth
the registration errors. Anyway, depending on the object
class (e.g., vegetation), smoothing of smaller changes with-
out detecting them might be the desired behavior.

Overall, we were able to detect changes of approximately
one cubic meter. However, this result is specific to our ex-
perimental system and specific to the underlying circum-
stances during our field campaigns (e.g., point density at
ground level). The presented methodology is independent
of hardware and survey characteristics, and it can easily
be adapted to any airborne or terrestrial laser scanning
system.

In this paper, we have presented a framework for ALS-
based change detection in urban areas. Our methodol-
ogy is inspired by (but different from) the concept of oc-
cupancy grids, and we implemented Dempster’s rule of
combination to fuse multiple measurements. During this
process, conflicts between different belief assignments are
evaluated with regard to change detection. The main con-
ceptual advantage of the proposed methods is the handling
of occlusions as unknown space, which would otherwise re-
quire a more complex case-by-case analysis. In contrast to
probabilistic approaches, the Dempster-Shafer theory al-
lows an explicit representation of ignorance. Therefore,
even partially non-overlapping ALS data can be combined
and compared without causing erroneously detections of
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changes. Different from the well-known concept of occu-
pancy grids, we evaluate the occupancy of space at the
exact 3D positions of the laser points, without declining
the given resolution of the laser scanner.

The examples presented in this paper were obtained
with an experimental sensor system, for which the data
analysis was done offline in order to show the feasibility of
the approach. Nevertheless, the proposed methods are in-
herently realtime capable, as opposed to classical methods
of point cloud analysis that start after the complete data
set was obtained. The following tasks have to be solved to
implement the on-the-fly change detection in practice:

• To generate the reference data in stage (1.), the ALS
system (i.e., the laser scanner and the navigational
sensors) must allow the recording of all raw data (tra-
jectory data, laser range measurements).

• To perform the online data analysis, the ALS system
has to gain realtime access to these raw data during
the data acquisition in stage (2.).

• The alignment of the data is crucial to the accuracy
of the change detection results. Therefore, the navi-
gational sensor system should preferably be operated
in realtime kinematic positioning mode (RTK), which
requires a data connection to one or more nearby
GNSS reference stations. As an alternative, we pro-
posed the use of the existing 3D data for terrain-
referenced navigation (Hebel and Stilla, 2010).

• Search operations within the reference data (points
and beams) must be performed very fast. While 3D
points can be efficiently organized in an octree or k-
d tree, to the best of our knowledge, no such search
structure exists for the organization of skew 3D lines.
We use the 3D grids VP and VR instead, in which we
store links to the reference data. Depending on the
number of data points and the cell size, the memory
requirements of VR can be quite high (several GB),
which has to be taken into account in the hardware
design.

• The numerical evaluation of exponential functions in
equations 3.4 is rather inefficient, but these calcula-
tions can be replaced by look-up tables. Furthermore,
the presented techniques have high potential for par-
allelization, which should be exploited to speed up the
data processing.

Modern ALS instruments show a trend toward increasing
performance and realtime processing. A typical example is
online waveform analysis (e.g., RIEGL VQ-580). For the
future, we expect that an efficient implementation of the
proposed methods can work in realtime on an operational
system, and we expect that the parameters (λ, c, κ) can
automatically be set during the data acquisition.

It is possible to perform further semantic analysis of the
multi-view ALS data, which can give new impulses to the

interpretation of detected changes. For instance, changes
to vehicles in the urban scene can be detected together
with an estimation of their motion (Yao et al., 2011). A
semantic interpretation of building facades was shown by
Tuttas and Stilla (2012), using multi-view ALS data of the
test site “Munich (TUM)” which have been acquired with
the same ALS system.
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Rutzinger, M., Rüf, B., Höfle, B., Vetter, M., 2010. Change detec-
tion of building footprints from airborne laser scanning acquired
in short time intervals, in: International Archives of Photogram-
metry, Remote Sensing and Spatial Information Sciences, pp. 475–
480.

Schatz, V., 2008. Synchronised data acquisition for sensor data fu-
sion in aerial surveying, in: Proceedings of the 11th International
Conference on Information Fusion, pp. 1125–1130.

Schenk, T., 2001. Modeling and analyzing systematic errors in air-
borne laser scanners. Technical Report. The Ohio State University.

Schmitt, M., Stilla, U., 2011. Fusion of airborne multi-aspect In-
SAR data by simultaneous backward geocoding, in: Joint Urban
Remote Sensing Event (JURSE), pp. 53–56.

Schulz, K.R., Scherbarth, S., Fabry, U., 2002. HELLAS: Obstacle
warning system for helicopters, in: Laser Radar Technology and
Applications VII, Proceedings of the International Society for Op-
tical Engineering 4723, pp. 1–8.

Shafer, G., 1976. A Mathematical Theory of Evidence. Technical
Report. Princeton University.

Stilla, U., Jutzi, B., 2009. Chapter 7: Waveform analysis for small-
footprint pulsed laser systems. Topographic Laser Ranging and
Scanning: Principles and Processing Shan J, Toth C, eds. CRC
Press/Taylor & Francis Group, 215–234.

Stilla, U., Sörgel, U., Thönnessen, U., 2003. Potential and limits of
InSAR data for building reconstruction in built-up areas. ISPRS
Journal of Photogrammetry and Remote Sensing 58, 113–123.

Thrun, S., 1998. Learning metric-topological maps for indoor mobile
robot navigation. Artificial Intelligence 99, 21–71.

Tuttas, S., Stilla, U., 2012. Reconstruction of rectangular windows in
multi-looking oblique view ALS data, in: ISPRS Annals of Pho-
togrammetry, Remote Sensing and Spatial Information Sciences,
pp. 317–322.
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