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Abstract. Change detection in urban areas requires the comparison of multi-temporal remote
sensing data. ALS (airborne laser scanning) is one of the established techniques to deliver these
data. A novelty of our approach is the consideration of multiple views that are acquired with
an oblique forward-looking laser scanner. In addition to advantages in terms of data coverage,
this configuration is ideally suited to support helicopter pilots during their mission, e.g., with
an obstacle warning system, terrain-referenced navigation, or online change detection. In this
paper, we present a framework for direct comparison of current ALS data to given reference
data of an urban area. Our approach extends the concept of occupancy grids known from
robot mapping, and the proposed change detection method is based on the Dempster-Shafer
theory. Results are shown for an urban test site at which multi-view ALS data were acquired
at an interval of one year.

Keywords: airborne laser scanning, LiDAR, change detection, multi-temporal data analysis,
urban areas

1 Introduction

1.1 Problem Description

Identification and analysis of changes in urban areas are common approaches to tasks like damage
inspection, traffic monitoring, or documentation of urban development. Typically, changes of urban
objects can be explained by human influences (e.g., construction, extension, or demolition of build-
ings). Moreover, seasonal effects (e.g., the foliation state of trees) and disasters (e.g., earthquakes)
can cause considerable changes that occur on different time scales. Several types of changes are of
interest when multi-temporal remote sensing data are compared. Typical categories include objects
that have appeared, disappeared, moved (e.g., cars), transformed, or changed their spectral char-
acteristics. Airborne laser scanning (ALS) is well suited to provide 3D measurements which allow
direct comparison of geometric features. In this context, a basic requirement for detecting differences
between multiple ALS point clouds is an accurate registration and alignment of the multi-temporal
data.

Furthermore, additional requirements must be met by the data acquisition and data analysis if
the laser scanner is used to support short-term operations such as the surveillance of urban areas,
terrain-referenced navigation, or detection of rapid changes. Examples can be found in assistance
systems for helicopter pilots, obstacle avoidance, landing operations in urban terrain, search and
rescue missions, emergency services, or disaster management. These applications require methods for
immediate processing of range measurements instead of the classical offline treatment of preprocessed
ALS data.
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1.2 Overview

Airborne laser scanning usually combines a LiDAR (light detection and ranging) device with highly
accurate navigational sensors mounted on an aircraft. Typically, an IMU (inertial measurement unit)
and a GNSS receiver (global navigation satellite system, e.g., GPS, the Global Positioning System)
are operated synchronously with a LiDAR scanning mechanism.

The intention to use this sensor system for change detection implies that 3D data of the urban
area in question had been acquired at an earlier date, so that currently measured ALS data can be
compared to these. In this paper, we address change detection in the case that both the reference
data and the current 3D data were acquired by an ALS system. In addition, we require this ALS
system to allow access to the component’s raw measurements, i.e., the range data, the scanning
geometry, and the IMU/GNSS trajectory. In contrast to classical nadir data acquisition, we capture
the scene with an oblique forward-looking laser scanner. This configuration is indispensable for
some of the applications mentioned in Section 1.1. During acquisition of the reference data, multiple
criss-crossing flight lines are used. Therefore, this setup has the additional advantage of full terrain
coverage (e.g., facades of buildings etc.). Overall, we distinguish two different stages of ALS data
acquisition and processing:

1. The creation of the database is not time-critical, i.e., the urban area can be scanned several times
from multiple aspects with a calibrated sensor, while the data are processed and optimized offline.
In (Hebel and Stilla 2007), we describe a method for the preclassification and the automatic
registration of such ALS data.

2. During the mission, new ALS measurements are to be aligned and compared to the reference
data. Regarding this task, we described a fast segmentation method in (Hebel and Stilla 2008)
that is based on scanline analysis of ALS data. Matching of planar objects, which are identified
in both the current data and the reference data, can be used to correct absolute errors of the
sensor position (Hebel and Stilla 2010).

In this paper, we focus on the comparison step, and we start from the premise that the system
calibration and data alignment issues are solved. Classical methods of change detection in ALS data
typically compare the point clouds themselves. In contrast, we include knowledge on empty space
that we observe during the data acquisition. With the assumption of a straight-lined propagation of
laser pulses, we state that the space between the laser source and the reflecting 3D point must be
empty (or transparent). Additionally, we allow for the occupancy of space behind the reflecting spot
to be unknown, as long as it is not affected by other laser measurements. This consideration handles
occlusions and changes implicitly, such that the latter are identifiable by conflicts of empty space
and occupied space along the direction of the laser pulse (which we call henceforth “laser beam”).
In robot mapping, such information is often managed in so-called occupancy grids. In this paper,
we adapt some of these concepts for the use with 3D laser data. Instead of evaluating occupancy
conflicts on raster cells, we identify these conflicts at the exact position of the 3D points. In the next
section, we give an overview of related work on change detection and occupancy grids. Our own
methodology is explained in Section 3. A description of our ALS setup and experimental results can
be found in Section 4. Finally, Section 5 presents a brief discussion and our conclusions.

2 Related Work

In the last decades, change detection in urban areas has been explored by various groups. Most of
them approach this task with different intentions and with different sensors. A typical example is the
automatic update of building databases. In (Champion et al. 2009) some contexts and an evaluation
of different approaches are described. In an overall analysis, it is concluded that LiDAR offers high
economical effectiveness and represents a viable basis for future operative systems. The use of ALS
for change detection with regard to buildings has been proposed, for instance, in (Murakami et al.
1999). Typically, a digital surface model (DSM) is generated by interpolating the 3D points onto a 2D
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grid, and changes are detected by computing the difference of these DSM data. To increase reliability
of the change detection results, Vögtle and Steinle (2004) classify the laser points into the classes
bare-earth, building, and vegetation. We have described a similar classification approach in (Hebel
and Stilla 2007) which is used to optimize the automatic registration of overlapping point clouds.
The analysis of multi-temporal ALS data is sometimes proposed to assess damage to buildings,
e.g., after earthquakes. Hommel (2009) puts strong emphasis on the elimination of vegetation in
the ALS data, as this class of points could be misinterpreted, depending on the foliation state of
the vegetation in the different data sets. A similar argumentation can be found in (Rutzinger et
al. 2010), and it was confirmed in our experiments. However, other applications are conceivable
wherein the detection and analysis of urban vegetation are of prime importance. A recent study on
DSM-based change detection methods for urban areas and a detailed survey of related work can be
found in (Matikainen et al. 2010).

Unlike the comparison of DSMs, the applications mentioned in Section 1.1 require a different
strategy for data processing. There are two reasons for this: (i) we consider oblique views that lead
to varying occlusions and point density depending on the aspect angle, (ii) the comparison of current
ALS data to given reference data should be executable in line with the data acquisition.

Similar boundary conditions are given if ranging sensors are used on mobile robots (whose
position and movement are known) in order to generate global maps from local and uncertain
sensor data. Most commonly, 2D maps that are horizontal slices of 3D space, are taken as a basis.
Moravec and Elfes (1985) were the first to represent these maps by an array of cells labeled unknown,
empty, and occupied, with values ranging from 0 to 1 to define the “degree of certainty”. Puente et al.
(1991) distinguish two different approaches to fuse information within such occupancy grids. These
approaches are: (i) probabilistic estimation based on Bayes’ theorem, and (ii) the combination rule
of the Dempster-Shafer theory of evidence (Shafer 1976).

Detailed work on autonomous navigation of mobile robots by a combination of probabilistic
occupancy grids with neural networks was done by Thrun (1998). The evidence theory of Dempster-
Shafer is commonly used for data fusion. In the context of occupancy models, it can substitute the
probabilistic approach, and it has the additional advantage of evaluating conflicting information
implicitly (Moras et al. 2011). In this paper, we evaluate such conflicts in multi-aspect and multi-
temporal ALS data, which we organize in 3D raster cells. Similarly, Himmelsbach et al. (2008)
proposed to use a 2 1

2D occupancy grid that acts like a hash table for the retrieval of 3D points. A
description of the strengths and weaknesses of a 3D-based approach is given in the next paragraph.

3 Strategy for Data Processing

Two different operating modes of ALS data acquisition were explained in Section 1.2. In stage (1),
a 3D voxel grid that covers the complete urban area is filled with information. During stage (2), we
decide whether current ALS measurements confirm or contradict this information in the database.
Fig. 1 illustrates such a 3D voxel grid and the process of ALS data acquisition. Within occupancy
grids, the data are typically downsampled or interpolated to match the raster cells. Consequently,
the details and positioning accuracy of detectable changes would be bounded by the resolution of
the occupancy grid. On the other hand, a fine-grained 3D grid would lead to a huge amount of data.

Instead of evaluating the occupancy of space for the voxels themselves, we use the grid structure
only to store information on the proximity of laser beams (and points). Once established, this data
structure enables us to identify all candidates of old laser range measurements that may interfere
with a new one. Furthermore, the cell size can be chosen comparatively wide (e.g., five times the
average point-to-point distance), resulting in a moderate amount of data. Since the grid is only used
as a search structure, the selection of the cell size has only minor impact on the results.

3.1 Generation of the Database

In stage (1), each laser pulse’s origin s is stored in an indexed list L, together with the measured
range r, such that p = s + r are the coordinates of the respective laser point. The sensor position
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Fig. 1. ALS data acquisition and 3D voxel grid.

s and the direction of r are interpolated from the synchronously recorded GNSS/IMU information
which is typically captured with a frequency lower than the pulse repetition rate of the laser scanner.
If multiple returns are received for a single laser pulse, these simply lead to multiple entries in L.
Furthermore, let r0 denote the respective unit vector r/ ‖r‖. Two cell arrays VP and VR, both
representing voxel grids as depicted in Fig. 2, are filled with indices of L in the following way: Each
index i ∈ L is included in a single cell of VP according to the 3D position of the laser point pi that
corresponds to this index. Therefore, VP simply represents a rasterization of the point cloud. Beyond
that, VR is used to store all indices of laser beams that traverse the voxels. To cope with this task,
we implemented a 3D variant of Bresenham’s algorithm, that is well-known in computer graphics for
efficient raster line drawing. For a single laser range measurement (si, ri), Fig. 2 illustrates how its
index i is distributed among cells of VP and VR. Each cell in VP or VR can receive either none, one
or multiple indices, depending on the number of laser points contained in this voxel, or depending
on the number of laser beams that run through this voxel, respectively.
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Fig. 2. Distribution of an index i among cells of VP and VR.

3.2 Modeling the Occupancy of Space

Following the terminology of the Dempster-Shafer theory, let U denote the universal set that contains
all possible states of the observed system. In our case, we observe the occupancy of space at a given
3D position, so U = {emp, occ} is the universal set, where emp and occ are abbreviations for “empty”
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and “occupied”. The power set 2U of U is given as the set {∅, {emp} , {occ} , U}. A so-called belief
mass in the interval [0, 1] is assigned to each element of this power set, with the additional properties
that the empty set ∅ has zero mass, and the sum of all other masses is one:

m : 2U → [0, 1] , m (∅) = 0,
∑
A∈2U

m (A) = 1 . (1)

An assignment that fulfills these criteria is called “basic belief assignment”. The Dempster-Shafer
theory makes use of the mass assignments to define upper and lower bounds of an interval that
contains the classical probability. These bounds are called “plausibility” and “belief”. Except for
equation (1), the value of m (U) does not concern {emp} or {occ} itself, as each of these has its own
mass. Instead, the mass m (U) of the universal set U is interpreted as the degree of ignorance. If
m (U) equals one, this means that the occupancy of space at the given position is totally unknown.
We model the impact of a laser range measurement p = s + r on the assignment of masses to a
position q in 3D space in the following way: First, let dx denote the longitudinal distance of q to p
(cf. Fig. 2):

dx = (q − p) · r0 . (2)

Similarly, let dy denote the transverse distance of q to p:

dy = ‖(q − p)× r0‖ . (3)

On the basis of the distances dx and dy, we define the following belief masses (at position q caused
by p):

mq,p (∅) = 0 ,

mq,p ({emp}) =

(
1− 1

1 + e−λdx−c

)
· e−κd

2
y , (4)

mq,p ({occ}) =

(
1

1 + e−λdx−c
− 1

1 + e−λdx+c

)
· e−κd

2
y ,

mq,p (U) = 1−mq,p ({emp})−mq,p ({occ}) .

By definition, (4) fulfills the conditions (1), so these equations represent a basic belief assignment.
The respective first factor in mq,p ({emp}) and mq,p ({occ}) is composed of sigmoid functions. One of
these is used to describe free space in front of p, the other characterizes the lack of knowledge behind
the laser point. In between, the inverse sum of the sigmoid functions reflects the actual occupancy
at the position of p. Fig. 3 shows the interaction of the sigmoid functions and the ratio of the belief
masses along the laser beam, with the parameters in equations (4) set to λ=12 and c=5. Outside of
the beam axis, the second factor in mq,p ({emp}) and mq,p ({occ}) describes a Gaussian profile that
fades to ignorance (transverse distribution). The parameters (λ, c, κ) describe the fuzziness of the
laser points. They should be chosen to conform (at least) to the physical characteristics of the laser
range measurements. This means that mq,p ({occ}) should reflect the point positioning accuracy,
which is influenced, for example, by the scanning precision and the range resolution of the specific
laser scanning device. If mq,p ({occ}) is too narrow, most range measurements would not interfere
with another. Otherwise, if mq,p ({occ}) is too broad, this would lead to false detections.

3.3 Combination of Evidence from Different Measurements

In the previous section we considered a single range measurement p = s+r and its influence on the
mass assignment to a position q. In case we observe two or more laser beams in the neighborhood
of q, we need to combine the respective mass assignments. Let p1 = s1 + r1 and p2 = s2 + r2 be
two independent laser range measurements. Equations (4) define different sets of mass assignments
to the position of q, which are given by mq,p1

and mq,p2
, respectively. For better readability, we

abbreviate mq,p1
({emp}) to m1 (e) and mq,p1

({occ}) to m1 (o) etc.
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Fig. 3. Belief assignment to points on the laser beam (dy = 0).

Using these notations, we apply Dempster’s rule of combination to calculate the joint mass m
from the sets m1 and m2. The amount of conflict C between the two mass sets is measured as follows
(“empty in m1 and occupied in m2, or vice versa”):

C = m1 (e)m2 (o) +m1 (o)m2 (e) . (5)

Within Dempster’s rule of combination, conflicting evidence is ignored, which is achieved by the
normalization factor (1− C) as follows:

m (e) =
m1 (e)m2 (e) +m1 (e)m2 (U) +m1 (U)m2 (e)

1− C
,

m (o) =
m1 (o)m2 (o) +m1 (o)m2 (U) +m1 (U)m2 (o)

1− C
, (6)

m (U) =
m1 (U) ·m2 (U)

1− C
,

m (∅) = 0

The operations (6) are commonly written as m = m1⊕m2 and result in a new set m of belief masses
that is a combination of m1 and m2. It should be noted that ⊕ is commutative and associative.
Therefore, even an arbitrary number of belief assignments can be combined by ⊕ in a unique way.

3.4 Change Detection

In stage (2), we decide whether a new ALS measurement q = sQ + rQ confirms or contradicts the
mass assignments which we obtain from old measurements that we recorded in L. Conflicts occur if
the laser beam (sQ, rQ) traverses occupied space in front of q, or if q comes to lie in a region that
is marked empty.

We address the latter case first. Let vq ⊂ VR denote the cells of VR which correspond to the
position of q. This subset vq may comprise only the voxel that includes q, or an additional neigh-
borhood. It is expected that vq contains the indices of laser beams in L which may affect the mass
assignment to the position of q. Let Iq be the set of indices which are associated with vq. On the
one hand, we consider the joint mass mq resulting from all measurements pi in L where i ∈ Iq:

mq = ⊕
i∈Iq

mq,pi
. (7)

On the other hand, the mass assignment m∗q that we obtain from q = sQ + rQ itself is given as:

m∗q ({emp}) = m∗q (U) = m∗q (∅) = 0, m∗q ({occ}) = 1 . (8)
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Based on these assignments, we can identify conflicts between mq and m∗q in the same way as it is
done in equation (5), resulting in a measure of conflict Cq = mq ({emp}).

The other type of conflict is caused by occupied space that is encountered while the laser pulse
propagates from sQ to q. To find these conflicts, we extend the list L to include mass assignments
to every point p in L. We initialize these masses to an unknown occupancy:

mp ({emp}) = mp ({occ}) = mp (∅) = 0, mp (U) = 1 . (9)

We use Bresenham’s line drawing algorithm in 3D to identify grid cells in VP that are affected by
the laser beam (sQ, rQ). Let vp denote this subset of VP, and let Ip be the set of indices associated
with vp. For every position pi with i ∈ Ip, we update the mass set mpi to the joint mass of mpi

and mpi,q:
mpi ← mpi ⊕mpi,q ∀i ∈ Ip . (10)

After the laser scanning process has left the reach of a point p in the database, we evaluate the
accumulated mass assignment mp and its conflict to m∗p, which is given analogous to equation (8).
We obtain Cp = mp ({emp}) as a measure of conflict.

3.5 Including Additional Attributes

If the proposed methods are applied to typical ALS data, vegetation is likely to cause conflicting
belief masses. This is to be expected, since vegetation typically leads to laser points that are blurred
and delocalized due to a large echo width. Some laser pulses penetrate the vegetation and mark
this space empty. Others are reflected by the foliage, indicating the same space is partially occupied.
Furthermore, vegetation is subject to seasonal changes. If the detection of such changes is of minor
importance, it is advisable to treat vegetation in a different way than ground level, buildings, or
other man-made objects. Besides full waveform analysis, local principal component analysis (PCA)
and region growing are common approaches to ALS point classification. Since the generation of the
database in Section 3.1 is not time critical, we derive an additional weighting factor from local PCA
that increases the amount of m(U) for all measurements which relate to vegetation.

4 Experiments

The data that we analyzed for this study were acquired during field campaigns in 2008 and 2009,
using a RIEGL LMS-Q560 laser scanner (version 2006) in combination with an Applanix POS AV
410 inertial navigation system. All sensors were attached to a helicopter of type Bell UH-1D. Our
current experimental setup lacks online data access, so the experiments described in this section
were conducted in a post-processing mode based on the stream of recorded raw data. With our
configuration and settings, each scan line of the laser scanner covered a field of view of 60◦ subdivided
into 1000 angular steps. The inclination angle of the laser scanner was set to 45◦ while flying with
the helicopter’s nose pitched down (Fig. 1). Due to aviation security reasons, the minimum flight
level had to be restricted to 1000 ft. These boundary conditions led to laser strips with a width of
500 m and an average point-to-point distance of 0.5 m. In April 2008, a test site was approached
in a cross pattern, resulting in an accumulated point cloud which includes 5,400,000 points with an
average point density of 16 pts/m2. Fig. 4a shows a rendered visualization of these reference data,
where each point is gray-value coded according to the echo amplitude, which is derived from full
waveform analysis. The cell size of VR and VP was chosen to be 2×2×2 m3, resulting in two cell
arrays of the dimensions 300×300×50 (which corresponds to 600×600×100 m3) to cover the area
in question. After the distribution of L-indices among these cells, the memory requirements of VP

and VR amount to 1.1 GB in total. The test site was scanned again in August 2009, using the same
sensors and a similar setting.

Based on the recorded data stream of a single strip (south-to-north), we successively applied the
methods described in Section 3. The parameters (λ, c, κ) in equations (4) were set to λ=12, c=5,
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κ=8 as shown in Fig. 3. First results of this experiment are depicted in Fig. 4b. Conflicts Cp ≥ 0.5
are shown in red (objects that have disappeared), whereas conflicts Cq ≥ 0.5 are colored yellow
(objects that have appeared). In this example, vegetation obviously causes a lot of conflicts Cq,
which can be ascribed to seasonal influences (April vs. August). As described in Section 3.5, we may
derive additional attributes in an independent manner (e.g., local PCA, region growing) and classify
the reference data in L to the classes ground, vegetation, and building. In case we want to focus
on man-made changes, this classification allows us to decrease the influence of data points in the
vegetation class. The result is shown in Fig. 4c and Fig. 4d. In addition to the previous color-coding,
green points now indicate that these are (most likely) part of an unchanged building. The remaining
conflicts are mainly caused by moved cars, demolition, and newly constructed buildings.

(a) (b)

(c) (d)

Fig. 4. (a) View of the reference data (April 2008), (b) conflicts of mass assignments (August 2009), (c)
result of change detection, (d) close-up view

5 Discussion and Conclusion

In this paper, we have presented a framework for ALS-based change detection in urban areas. Our
methodology is inspired by the concept of occupancy grids, and we implemented Dempster’s rule of
combination to fuse multiple measurements. During this process, conflicts between different belief
assignments are evaluated with regard to change detection. The proposed methods are inherently
realtime capable, as opposed to classical methods of point cloud analysis that start after the com-
plete data set was obtained. Modern ALS instruments show a trend toward increasing performance
and realtime processing. A typical example is online waveform analysis (e.g., RIEGL VQ-580). Fur-
thermore, the presented techniques have high potential for parallelization, and the time-consuming
evaluation of exponential functions can be replaced by look-up tables. We expect that an efficient
implementation of the proposed methods can work in realtime on an operational system.

The main conceptual advantage of the proposed methods is the handling of occlusions as un-
known space, which would otherwise require a more complex case-by-case analysis. In contrast to
probabilistic approaches, the Dempster-Shafer theory allows an explicit representation of ignorance.
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Therefore, even partially non-overlapping ALS data can be combined and compared without causing
erroneously detections of changes. Different from the well-known concept of (2D) occupancy grids,
we evaluate the occupancy of space at the discrete 3D positions of the laser points, without declining
the given resolution of the laser scanner.

The experiments described in Section 4 demonstrated that spatial changes can be reliably de-
tected, provided that the data are properly aligned. Seasonal changes in vegetation, changes of
buildings (e.g., extensions, demolition), and moved cars are found by our automatic method. How-
ever, a few unresolved problems remain: For now, we ignored changes that occurred within the time
slot in which the reference data were captured. The minimum size of detectable changes is limited by
the point density and the respective point positioning accuracy, which need to be modeled correctly
by means of the parameters (λ, c, κ). A more quantitative evaluation is still missing, for which we
would require the ground truth or simulated data. These issues will be part of our future work.
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